G15050大规模可再生能源接入辅助服务成本补偿机制研究.doc

返回 相似 举报
G15050大规模可再生能源接入辅助服务成本补偿机制研究.doc_第1页
第1页 / 共75页
G15050大规模可再生能源接入辅助服务成本补偿机制研究.doc_第2页
第2页 / 共75页
G15050大规模可再生能源接入辅助服务成本补偿机制研究.doc_第3页
第3页 / 共75页
G15050大规模可再生能源接入辅助服务成本补偿机制研究.doc_第4页
第4页 / 共75页
G15050大规模可再生能源接入辅助服务成本补偿机制研究.doc_第5页
第5页 / 共75页
点击查看更多>>
资源描述:
能源基金会 The Energy Foundation 中国可持续能源项目 The China Sustainable Energy Program 研究报告 Research Report 大规模可再生能源 接入 辅助服务成本补偿 机制研究 Compensation Mechanisms for Ancillary Services for Grid Integration of Large-scale Renewables 中国经济体制改革研究会 公共政策研究中 心 2012 年 7 月 项目信息 项目编 号 G-1110-15050 Grant Number G-1110-15050 项目期 2011 年 11 月 1 日 – 2012 年 10 月 31 日 Grant period November 1st, 2011 – October 31st, 2012 所属领域 中国可再生能源 Sector Renewable Energy in China 项目概述 由于风力发电具有波动性、不确定性以及不可调峰性等特征,在接入电网发电时需常规电源提供调峰和备用等辅助 服务,才可以满足电网调度的要求。 本项目将 研究两个问题 ( 1)大规模风电接入导致辅助服务成本提高的程度; ( 2)如何对风电接入导致的辅助服务成本进行补偿。 Project Discription Wind power is intermittent, uncertain, and cannot be moved down. In order to meet the requirements of dispatching, ancillary services such as reserves and regulations from conventional power are required for integration. This project mainly focuses on the following two issues 1. How much will large-scale wind power integration increase the cost of ancillary services 2. How to compensate the cost of ancillary services resulting from large-scale wind power integration 项目成员 黄少中 刘树杰 俞燕山 雒亚龙 邓 青 闫志涛 刘 涛 陈少强 张粒子 胡军峰 赵立志 葛 炬 Project team Huang Shaozhong Liu Shujie Yu Yanshan Luo Yalong Deng Qing Yan Zhitao Liu Tao Chen Shaoqiang Zhang Lizi Hu Junfeng Zhao Lizhi Ge Ju 关键词 可再生能源 大规模接入 辅助服务 成本补偿 Key Word Renewable Energy Large-scale Grid Integration Ancillary Services Cost Compensation 执行 摘要 全球气候变化是全世界都面临的重大挑战,其中人类活动所排放的 CO2 数量急剧增加是最主要的原因,其对环境的影响也越来越重要。在世界 CO2 排放总量中,中国已经成为全世界 CO2 排放量最多的国家,占了 20以上的比重,而且比重还有进一步加大的趋势。因此在未来全世界控制 CO2 排放的努力中中国必将承担越来越 大的压力和责任。其中电力行业 CO2 排放占了中国排放总量的 40左右,是 CO2 排放总量最多的行业,因此电力行业 CO2 强度下降对于中国 2020 年 CO2 减排目标的实现至关重要。 大规模发展可再生能源对电力行业 CO2 减排具有积极作用,中国可再生能源也取得了超常规发展。可再生能源包括风力发电、太阳能发电、潮汐能发电、地热发电、生物质能发电等,目前中国具备大规模发展条件的主要是风力发电,所以本课题大规模可再生能源主要指风力发电。 2005 年中国风力发电的装机容量只有 106 万 KW,发电量也很少,几乎可以忽略不计,但是到 2010 年中国风力发电的装机容量就达到了 2958 万 KW,相比 2005 年增加了将近 27倍,年均增加 94.60,发电量也达到了 494 亿 KWh,占所有发电量的 1.17,预计到 2020 年风力发电装机容量将达到 1.5 亿 KW,发电量也将达到 2840 亿KWh,占所有发电量的 3.5左右,发展速度仍将非常迅速。 但是由于风力发电具有波动性、不确定性以及不可调峰性等特征,在接入电网发电时需常规电源提供调峰和备用等辅助服务,才可以满足电网调度的要求。随着风力发电的大规模发展,其对常规电源辅助服务的需求也将越来越大,常规电源 是否可以提供足够的辅助服务对于风力发电的发展也至关重要。电监会的统计显示, 2010 年 1-6 月份,风电弃风导致损失电量 27.76 亿千瓦时,占同期风电上网电量的 12.47,其最主要的原因就在于电力系统能够为风电接入提供辅助服务的能力不足。因此,提高电力系统为风电接入提供辅助服务的能力,对于风电真正入网发电,具有非常重要的意义。 但是,提高电力系统辅助服务能力需要较大投入,单纯依靠电力系统自身可能很难承担,同时风电大规模接入电网所带来的电力系统辅助服务成本提高由电力系统承担也有失公平,因此需要在此基础上进一步 研究风电接入所带来的辅助服务成本提高的分摊和补偿机制,激励电力系统为风电接入提供辅助服务。只有这样,电力系统辅助服务能力才可能真正得到提高,风电发电入网也才能够真正得到保障。 因此,本课题将重点研究两个问题 ( 1)大规模风电接入导致辅助服务成本提高的程度; ( 2)如何对风电接入导致的辅助服务成本进行补偿。 中国辅助服务的范围包括一次调频、自动发电控制( AGC)、调峰、无功调节、备用、黑启动服务等,其中大部分与国际通行概念相似。特殊的地方在于由于中国还未建立电力交易市场,常规电厂调峰成本无法通过电力交 易市场得到补偿,因此调峰属于中国特有的辅助服务概念。调峰是指发电机组为了跟踪负荷的峰谷变化而有计划的、按照一定调节速度进行的发电机组出力调整所提供的服务,在国外一般将此服务归入现货市场交易中。 大规模风电接入电网主要影响的辅助服务有调峰、备用和无功。随着风电发电技术的发展,尤其是双馈感应异步风力发电机的出现,其自身可以提供无功补偿,对电力系统无功辅助服务的需求很小。因此风电接入对电力系统无功辅助服务的影响在本课题中被忽略。本课题将重点研究风电接入对调峰和备用辅助服务的影响。 风电接入对辅助服务影响程度的 分析主要采用“ 有无对比法 ”,即通过对比风电是否接入电网,两者之间的差值即风电接入所带来的影响。风电接入对不同的辅助服务影响的原因也不相同。调峰辅助服务主要是由于风电出力波动性所带来的,因此风电接入导致的调峰辅助服务应该采用无风电接入负荷持续曲线与风电接入净负荷持续曲线(负荷与风电综合)所导致的调峰辅助服务的差值进行计算。备用辅助服务主要是由于风电出力预测偏差所带来的,因此风电接入导致的备用辅助服务应该采用无风电接入预测偏差与风电接入综合预测偏差所导致的备用辅助服务的差值进行计算。本课题基于典型风电场数据调研 ,文献查阅,专家讨论等方式,对我国 2015 年和 2020 年风电接入对辅助服务成本的影响进行了分析,结果显示, 2015 年和 2020 年中国大规模风电接入导致的调峰辅助服务成本分别为 116 亿元和 187 亿元左右,备用辅助服务成本分别为 34 亿元和 65 亿元左右。如果完全由风电承担,则 2015 年承担的成本为0.083 元 /千瓦时, 2020 年承担的成本为 0.084 元 /千瓦时左右,很显然是风电承担不起的。 通过国内外辅助服务补偿机制对比研究,发现中国和国外对辅助服务成本如何进行补偿存在本质区别。中国目前采用辅助服务考核和补偿行 政方式对辅助服务成本进行补偿,补偿资金由入网电厂按照上网电量进行分摊,完全采用发电系统内部循环的方式,并没有考虑到辅助服务由谁引致以及引致多少的问题。国外电力系统辅助服务则主要通过辅助服务市场方式进行提供,辅助服务成本补偿资金则基本按照“谁引发谁付费”的原则进行确定,主要由用户承担。因此相比中国目前采取的辅助服务补偿方式,国外的补偿方式相对更为合理。 本课题进一步比较了对风电接入导致的辅助服务成本进行补偿的三种方式,分别为按照上网电量分摊辅助服务成本、按照引致比例分摊辅助服务成本以及电力市场补偿辅助服务成 本。经过测算发现,按照上网电量方式分摊辅助服务成本的话,会导致风电承担的辅助服务成本小于其引发的程度,因此要求风电加入现行辅助服务成本分摊模式就有失公平,需加以改进。按照引致比例分摊辅助服务成本相对更合理,但由于风电场之间存在平滑效应,单个风电场对辅助服务的引致比例不太容易确定。同时风电接入导致的调峰成本由风电出力波动引起,主要是客观原因,应该由消费者来承担更为合理,风电接入导致的备用成本由风电预测偏差引起,更多是主观原因,应该由风电场自身承担,最终通过可再生能源附加对风电场再做补偿。因此电力市场方式补偿辅 助服务成本更为恰当,通过电力现货市场由消费者补偿调峰辅助服务成本,通过电力备用市场由消费者和风电分别承担备用辅助服务成本。 基于上述分析,本课题得到以下结论 1. 单纯由风电场承担其引发的辅助服务成本过于困难,需要新的成本补偿机制。 2. 风电引发的调峰辅助服务成本应该由消费者承担。 3. 风电引发的备用辅助服务成本应该由风电场自身承担。 4. 电力市场方式补偿辅助服务成本更合理。 考虑到改革难易程度,本课题建议分三个阶段建立成本补偿机制,对风电接入导致的辅助服务成本进行补偿。三个阶段分别为 第一阶段基于风电预测偏差 考核由风电场补偿其引发的备用成本。 对于第一阶段,本课题提出以下政策建议 1. 建立风电预测偏差考核机制。 2. 考核时要允许风电场联合进行考核。 3. 风电场需要承担的备用辅助服务成本根据预测偏差程度确定。 4. 风电接入导致的调峰辅助服务成本暂时通过上调火电标杆电价由消费者承担。 第二阶段辅助服务成本补偿不足部分由电网公司承担。 对于第二阶段,本课题提出以下政策建议 1. 辅助服务成本补偿资金不足部分由电网公司承担。 2. 电网公司承担的辅助服务成本记入购电成本由销售电价补偿。 3. 对销售电价补偿辅助服务成本规定一个限额。 第三阶段通过电力市场方式补偿辅助服务成本。 对于第三阶段,本课题提出以下政策建议 1. 建立发电企业竞价上网机制。 2. 建立上网电价与销售电价联动机制。 3. 建立备用辅助服务交易机制。 4. 建立风电参与备用辅助服务交易机制。 cutive Summary Global climate change, resulting mainly from rapid increase of CO2 emitted by human activities, is a considerable challenge facing the whole world and rts increasingly significant impacts on environment. China is the world’s biggest CO2 emitter, taking up 20 of total amount. It is estimated that the proportion will continue increasing. China has an increasingly heavy responsibility to CO2 mitigation in the world. In China, power sector is the biggest CO2 emitter, accounting for about 40 of the total emission in China. In order to realize the 2020 target for CO2 emission in China, reduced CO2 intensity in power sector is crucial. Large-scale wind power development plays an active role in CO2 reduction in power sector. For this purpose, China’s wind power has witnessed rapid development. In 2005, China’s installed capacity of wind power is only 1.06 GW and power generated is so small, almost negligible. However, by 2010, China’s installed capacity of wind power reached 29.58 GW. Compared with its installed capacity in 2005, the number increased by nearly 27 times with an annual increase rate of 94.6. In the same year, power generated reached 49.4 billion kWh, accounting for 1.17 of total. It is estimated that wind power will maintain the rapid growth, and in 2020 installed capacity of wind power in China will reach 150 GW, generating electricity of 384 billion kWh, taking up 3.5. However, wind power is intermittent, uncertain, and cannot be moved down. In order to meet the requirements of dispatching, ancillary services such as reserves and regulations from conventional power are required for integration. With the large-scale wind power development, demand for ancillary services provided by conventional power is increasing. Whether conventional power can provide sufficient ancillary services is crucial to wind power development. SERC statistics show that in the period between January and June in 2010, 2.776 billion kWh of electricity was lost due to wind abandonment, taking up 12.47 of the total integrated electricity in the same period. The major reason for the loss is a lack of ancillary services. Therefore, increased capacity of ancillary service provision in power system has very important significance towards wind power integration. Improved capacity of ancillary service provision in power system asks for huge investment, which can hardly be afforded by power system itself. Also, it would be unfair to have power system afford the cost. Hence, in order to incentivize ancillary service provision for wind power integration, further research is necessary on split and compensation mechanisms for the concomitant cost. Only in this way can capacity of ancillary service provision in power system be enhanced, and wind power integration be guaranteed. This research will mainly focus on the following two issues 1. How much will large-scale wind power integration increase the cost of ancillary services 2. How to compensate the cost of ancillary services resulting from large-scale wind power integration In China, the scope of ancillary services covers primary frequency regulation, AGC, movement down, reactive power regulation, reserves, and black start. Most of them share identical concepts with international ones. The difference is that, in China, movement down is classified into ancillary services. It is because China has not set up power trading market yet, and hence cost of movement down provided by conventional power plants cannot be compensated through the market. Ancillary services that are mainly affected by large-scale wind power integration include movement down, reserves, and reactive power. As the impact on reactive power is comparatively small, this project will not cover this part. Currently, China adopts ancillary service assessments and administrative s to compensate the cost, indicating that compensatory funds should be allocated to power plants connected to girds according to the amount of on-grid power. The practices are obviously unfair and therefore improvement is highly necessary. This project analyzes the cost of movement down caused by large-scale wind power integration through load duration curve and analyzes the cost of reserves caused by large-scale wind power integration through forecast error model. The result shows that, in 2020, the cost of movement down caused by large-scale wind power integration is 26.76 – 34.33 billion and the cost of reserves is 1.21 – 6.56 billion. If afforded by wind power exclusively, the cost will be 0.073 – 0.106 Yuan/kWh. Obviously, wind power can hardly afford. Based on the above analysis, this research comes to the following conclusions 1. Since it would be impossible to have wind power plants afford ancillary service costs exclusively, new cost allocation mechanism is required. 2. The cost of movement down should be compensated by consumers. 3. The cost of reserves should be compensated by wind power. 4. It is more reasonable to compensate ancillary services by power market. Because these res are of different levels of difficulty, the project suggests establishing costs compensation mechanism step by step, from the easier one to the more difficult ones. Three phases include Phase One compensate reserve costs generated by wind integration through wind power plants based on forecast error assessment. 1. Establish wind power forecast error assessment mechanism. 2. Wind power plants should be allowed to join together for joint assessment. 3. Reserve costs are compensated by wind power based forecast error. 4. Movement down cost is compensated by consumers through the on-grid price adjustment. Phase Two additional ancillary service costs should be compensated by the grid. 1. Additional ancillary services costs are paid by grid company. 2. The ancillary services costs should be included into the retail price. 3. The retail price compensation should be limited. Phase Three compensate the costs of ancillary services more freely through the establishment of power market. 1. Establish a mechanism of competing on price for power plants’ connection to grids. 2. Establish an mechanism by which sales price is linked with on-grid power price. 3. Establish a market mechanism for ancillary services. 4. Establish a mechanism to incorporate wind power into the ancillary services market. 目 录 一、导 论 .11 1、研究背景及意义 11 2、研究目 标 . 12 3、国内外研究现状 . 12 4、研究内容 . 14 二、辅助服务概念简介 . 15 1、辅助服务概念 . 15 2、辅助服务类型 . 15 3、中外辅助服务区别 . 16 4、本章小结 . 19 三、大规模可再生能源接入辅助服务成本分析 . 20 1、对辅助服务的影响 . 20 2、调峰辅助服务成本分析 . 22 3、备用辅助服务成本分析 . 31 4、本章小结 . 35 四、国内辅助服务成本补偿方式简介 . 37 1、辅助服务成本测算方式 . 37 2、辅助服务补偿资金来源 . 40 3、本章小结 . 42 五、国外辅助服务成本补偿方式简介 . 43 1、澳大利亚辅助服务简介 . 43 2、美国辅助服务简介 . 44 3、英格兰 威尔士辅助服务简介 . 48 4、北欧辅助服务简介 . 50 5、借鉴及启示 . 52 六、大规模可再生能源接入辅助服务成本补偿方式比较 . 53 1、上网电量比例分摊成本补偿方式 . 53 2、引致比例分摊成本补偿方式 . 55 3、电力市场模式成本补偿方式 . 55 4、补偿方式比较 . 57 七、结论及政策建议 . 58 一、导 论 1、研究背景及意义 全球气候变化是全世界都面临的重大挑战,其中人类活动所排 放的 CO2 数量急剧增加是最主要的原因,其对环境的影响也越来越重要。 1992 年联合国就在联合国气候变化框架公约(简称框架公约)中提出要控制人类活动CO2 排放,并持续不断的召开会议讨论减缓乃至降低人类 CO2 排放数量的措施。从 1995 年到 2010 年,联合国召开了十六次框架公约缔约方大会,其中比较重要的包括 1997 年在日本京都召开的框架公约第三次缔约方大会,最终通过了京都议定书,规定从 2008 到 2012 年期间,主要工业发达国家的温室气体排放量要在 1990 年的基础上平均减少 5.2%。 2007 年在印 度尼西亚巴厘岛召开的框架公约第十三次缔约方大会,最终通过了 巴厘岛路线图 ‖,明确规定所有发达国家缔约方都要履行可测量、可课题、可核实的温室气体减排责任。最近的一次努力是 2010 年 11 月在墨西哥坎昆召开的框架公约第十六次缔约方大会。在未来几年,国际上关于 CO2 减排的努力肯定会不断进行。 在世界 CO2 排放总量中,中国已经成为全世界 CO2 排放量最多的国家,占了 20以上的比重,而且比重还有进一步加大的趋势。因此在未来全世界控制 CO2 排放的努力中中国必将承担越来越大的压力和责任。中国政府也制定了自己 CO2 减 排的目标。 2009 年 11 月,中国政府宣布 CO2 减排目标为 2020 年单位 GDP 二氧化碳排放强度相比 2005 年下降 40-45。 中国电力行业 CO2 排放占了中国排放总量的 40左右,是 CO2 排放总量最多的行业,因此电力行业 CO2 强度下降对于中国 2020 年 CO2 减排目标的实现至关重要。 电力行业降低 CO2 排放的主要措施包括两个方面,一方面是结构调整,即增加可再生能源发电在总发电量中的比重,另一方面是降低常规燃煤发电 CO2排放的强度。降低常规燃煤发电 CO2 排放强度主要通过技术改进,比如超临界燃煤技术,超超临界燃煤技 术等,改进余地较为有限,通常只能降低 CO2 排放强度 10左右,因此降低电力行业 CO2 排放更重要的是结构调整,增加可再生能源发电量的比重。 12 可再生能源包括风力发电、太阳能发电、潮汐发电、地热发电、生物质发电等,目前风电是最重要的发电方式,在我国的发展也非常迅速。 2005 年我国风力发电的装机容量只有 106 万 KW,发电量也很少,几乎可以忽略不计,但是到 2010 年我国风力发电的装机容量就达到了 2958 万 KW,相比 2005 年增加了将近 27 倍,年均增加 94.60,发电量也达到了 494 亿 KWh,占所有发电量的 1.17,预计到 2020 年风力发电装机容量将达到 1.5 亿 KW,发电量也将达到 3840 亿 KWh,占所有发电量的 3.5左右,仍将保持快速增长的势头。 但是由于风力发电具有波动性、偶发性、不可调峰性等特征,其在上网发电时需常规发电作调峰和备用等辅助服务,才可以满足电网调度的要求。随着风力发电的大规模发展,其对常规发电辅助服务的需求也将越来越大,常规发电是否可以提供足够的辅助服务对于风力发电的发展至关重要。但是目前电力系统辅助服务成本由发电厂按照上网电量分摊,同时常规发电为风力发电提供辅助服务对常规发电的要求也较高,其负 荷率较低,供电煤耗等都将增加,相应发电成本也将提高,也需要对提高的成本进行补偿。因此风力发电导致常规发电备用辅助服务成本如何得到补偿对电力行业真正提高可再生能源发电比例,降低电力行业 CO2 排放具有重要意义。 2、研究目标 本课题的研究目标主要包括两个 ( 1)大规模风电接入导致辅助服务成本提高多少; ( 2)风电接入导致的辅助服务成本如何进行补偿。 3、国内外研究现状 电力辅助服务是电力系统运行的重要组成部分,它是保证电力系统稳定运行,电力供需可以实现瞬时平衡的重要技术手段。电力辅助服务大体上可以分为自动发电 控制( AGC),备用,无功及电压支持,恢复和黑启动。在电力市场化改革之前,由于实行厂网一体化垄断运行,辅助服务成本和电能成本没有区分,辅助服务都是由电厂在调度员的命令下免费提供,不存在辅助服务需要单独提供的问题。但是在 2003 年我国电力行业开始进行“厂网分开,竞价上网”的改革后,电厂成为独立的经济主体,不再愿意无偿提供辅助服务,希望能够获得合理的补偿,因此需要对辅助服务如何定价和补偿进行研究。首先很多文献研究了辅助服务市场如何运行。文献 [1]对 2000 年前电力辅助服务的文13 献进行了综述,主要包括辅助服务的定义 ,辅助服务的市场模式以及辅助服务的定价方式。文献 [2]对电力辅助服务交易市场的其交易流程、需求预报和发布、数据申报、竞价规则、交易机制及发电与输电辅助服务的调度进行了详细的描述。文献 [3]对各个国家的辅助服务市场模式进行了比较。文献 [4]对各个国家辅助服务市场运行方式进行了比较,并提出在电力市场环境下辅助服务市场的实现方式。文献 [5]详细介绍了北欧辅助服务市场交易模式。文献 [6]提出了一种基于供需双方可靠性竞标的辅助服务交易模式。文献 [7]分析了辅助服务市场的运营方式。在辅助服务市场运行方式的基础上,又有文 献进一步研究了提供辅助服务的定价和补偿方式。文献 [8]介绍了一种基于发电主市场价格信息的辅助服务定价方法。文献 [9]对辅助服务补偿机制进行了研究。文献 [10]对水电机组提供辅助服务的定价机制进行了研究。 但是对辅助服务成本进行补偿,需要相应的分摊机制。文献 [11]给出了在大用户直购的情况下辅助服务成本如何进行分摊的机制。文献 [12]利用Aumann-Shapley 值的方法对辅助服务成本的分摊问题进行了研究。文献 [13]利用修正 Y-bus 矩阵分析方法对辅助服务成本的分摊问题进行了研究。文献 [14]利用敏感 性和邮票( postage-stamp)方法对辅助服务成本分摊问题进行了研究。文献 [15]对一次调频辅助服务成本分摊问题进行了研究。文献 [16]利用成本和风险混合最优模型对旋转备用辅助服务成本的最优分配进行了研究。 风电作为不确定,不可调峰的发电资源,其发电状况无法被控制,其本质上可以被认为是一种负负荷。因此在风电接入电网的情况下,电力辅助服务的对象可以认为负荷和风力发电合并后的净负荷波动。净负荷波动导致的辅助服务和负荷波动导致的辅助服务之间的差额就是风电导致的辅助服务状况。因此需首先分析风力发电的出力波动特 性。文献 [17]分析了张家口尚义国华风电场的出力特性,发现风电出力标准差为 2.4,同时讨论了风电接入对电力系统调频的影响。文献 [18]分析了江苏省风电出力特征曲线,以及风电接入对江苏省电网规划的影响。文献 [19]对甘肃酒泉风电出力特性进行了研究,发现单个风电场群每分钟的出力变化率约为 2.047.14 , 而对于整个酒泉风电基地 , 其每分钟的出力变化率则约为 0.691.80。文献 [20]分析了江苏省风电场的出力特性,以及风电场接入对电网综合负荷特性的影响。 在风电出力波动特性的基础上,才可以进一 步深入分析风力发电导致的辅助服务状况。首先需要确定风力发电导致辅助服务增加的数量。文献 [21]重点14 讨论了风电接入对电网暂态稳定性的影响。文献 [22]讨论了风电接入对西北电网辅助服务的影响。文献 [23]讨论了风电接入对电力系统旋转备用的影响。文献 [24]讨论了风电接入对电力系统备用容量的影响。文献 [25]提出了一种研究风电接入电网下常规机组负调峰能力极限的优化模型。 在确定风电接入对何种辅助服务有影响的基础之上,需进一步得到风力发电导致的各种辅助服务成本的状况。文献 [26]讨论风电接入电网产生的各种价值和成本 ,价值包括发电价值和环境价值,成本包括发电成本和辅助服务成本。文献 [27]利用情景分析法分析了丹麦大规模风电接入导致的辅助服务成本的状况。文献 [28]对风电接入如何影响电力系统运行和辅助服务状况的相关文献进行了综述。文献 [29]对美国明尼苏达州风电接入引起的各种辅助服务成本进行了计算。但是目前还没有文献对风力发电导致的辅助服务成本如何补偿和分摊进行研究。 4、研究内容 本课题基于典型风电场数据调研,
展开阅读全文

最新标签

网站客服QQ:123120571
环境100文库手机站版权所有
经营许可证编号:京ICP备16041442号-6