《2018年可再生发电成本报告》.pdf

返回 相似 举报
《2018年可再生发电成本报告》.pdf_第1页
第1页 / 共88页
《2018年可再生发电成本报告》.pdf_第2页
第2页 / 共88页
《2018年可再生发电成本报告》.pdf_第3页
第3页 / 共88页
《2018年可再生发电成本报告》.pdf_第4页
第4页 / 共88页
《2018年可再生发电成本报告》.pdf_第5页
第5页 / 共88页
点击查看更多>>
资源描述:
RENEWABLE POWER GENERATION COSTS IN 2018 Copyright © IRENA 2019 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. Citation IRENA 2019, Renewable Power Generation Costs in 2018, International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-126-3 About IRENA The International Renewable Energy Agency IRENA is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal plat for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all s of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements This report was prepared by Harold Anuta, Pablo Ralon and Michael Taylor IRENA. Valuable review and feedback were provided by Dolf Gielen, Rafael De Sá Ferreira, Paul Komor and Adrian Whiteman. The report was edited by Jon Gorvett. Available for download www.irena.org/publications. For further ination or to provide feedback costsirena.org Disclaimer This publication and the material herein are provided “as is”. All reasonable precautions have been taken by IRENA to verify the reliability of the material in this publication. However, neither IRENA nor any of its officials, agents, data or other third-party content providers provides a warranty of any kind, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein. The ination contained herein does not necessarily represent the views of all Members of IRENA. The mention of specific companies or certain projects or products does not imply that they are endorsed or recommended by IRENA in preference to others of a similar nature that are not mentioned. The designations employed and the presentation of material herein do not imply the expression of any opinion on the part of IRENA concerning the legal status of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries. Photographs are from Shutterstock unless otherwise indicated.IRENA | 3 FOREWORD The costs for renewable energy technologies reached new lows again last year. Solar and wind power have emerged as the most affordable power source for many locations and markets, with cost reductions set to continue into the next decade. Cost declines across the board in 2018 have reconfirmed the status of renewable power as a highly cost-effective energy source. New solar photovoltaic PV and onshore wind power are on the verge of costing less than the marginal operating cost of existing coal-fired plants. Steadily improving competitiveness has made renewables the backbone of the world’s energy transation. The International Renewable Energy Agency IRENA has tracked and analysed the cost evolution of renewable power since 2012. Combining the latest data with global coverage and a transparent ology has helped to shed light on the accelerating momentum of renewables, not only as a key climate solution but also as a strong business proposition. Within IRENA’s database, for instance, over three-quarters of the onshore wind and four-fifths of the solar PV project capacity due to be commissioned in 2020 should produce cheaper electricity than any coal, oil or natural gas option. Crucially, they are set to do so without financial assistance. The competitiveness of renewable power generation options was not always widely recognised. However, the past decade has seen governments, industry, financing institutions, investors and project developers work together to drive down costs and improve perance. Solar and wind power – once seen as an expensive way to address economic, environmental and social-development goals – are now a cost-competitive way to meet energy demand. To fully harness the economic opportunity of renewables, IRENA will work closely with countries to develop concerted action on the ground. Electrification with renewables offers a low-cost decarbonisation solution to meet the climate goals set out in the Paris Agreement. Any development aiming to be sustainable needs to tap into renewable power. Francesco La Camera Director-General International Renewable Energy Agency IRENA | 5 FIGURES 6 TABLES 8 ABBREVIATIONS 8 KEY FINDINGS 9 SUMMARY 11 1.1 Renewable power generation The competitive backbone of the global energy transation 11 1.2 Onshore wind power 18 1.3 Solar photovoltaics 20 1.4 Offshore wind power 23 1.5 Concentrating solar power 25 1.6 Hydropower 27 1.7 Geothermal power generation 28 1.8 Bioenergy 29 1 ONSHORE WIND POWER 31 2 SOLAR PHOTOVOLTAICS 43 3 OFFSHORE WIND POWER 49 4 CONCENTRATING SOLAR POWER 54 5 HYDROPOWER 58 6 GEOTHERMAL POWER 66 7 BIOENERGY FOR POWER 69 REFERENCES 76 ANNEX I COST METRIC OLOGY 79 ANNEX II THE IRENA RENEWABLE COST DATABASE 84 ANNEX III REGIONAL GROUPINGS 86 CONTENTS6 | RENEWABLE POWER GENERATION COSTS IN 2018 FIGURES Figure S.1 Global LCOE of utility-scale renewable power generation technologies, 2010–2018 12 Figure S.2 G l o b a l w e ig h t e d a v e r a g e t o t a l i n s t a l l e d c os t s a n d p r oj e c t p e r c e n t i l e r a n g e s f o r C S P , solar PV, onshore and offshore wind, 2010–2018 14 Figure S.3 T h e L C O E f o r p r oj e c t s a n d g l o b a l w e ig h t e d a v e r a g e v a l u e s f o r C S P , s o l a r P V , onshore and offshore wind, 2010–2022 15 Figure S.4 G l o ba l w e i g h t e d a v er a ge t o ta l i n s ta l l e d c o s t s , c apac i t y f ac t o r s and L C O E for onshore wind, 2010–2018 19 Figure S.5 G l o b a l w e ig h t e d a v e r a g e t o t a l i n s t a l l e d c os t s , c a p a c i t y f a c t o r s a n d L C O E f o r s o l a r P V , 2 0 1 0 – 2 0 1 8 22 Figure S.6 G l o b a l w e ig h t e d a v e r a g e t o t a l i n s t a l l e d c os t s , c a p a c i t y f a c t o r s a n d L C O E f o r o f f s h o r e w i n d , 2010–2018 24 Figure S.7 G l o b a l w e ig h t e d a v e r a g e t o t a l i n s t a l l e d c os t s , c a p a c i t y f a c t o r s a n d L C O E f o r C S P , 2 0 1 0 – 2 0 1 8 26 Figure S.8 G l o b a l w e ig h t e d a v e r a g e t o t a l i n s t a l l e d c os t s , c a p a c i t y f a c t o r s a n d L C O E f o r h y d r o p o w e r , 2010–2018 27 Figure S.9 G l o ba l w e i g h t e d a v er a ge t o ta l i ns t a l l e d c o s t s , c apac i t y f ac t o r s and L C O E f o r ge o t h er m a l p o w er , 2010–2018 29 Figure S.10 G l o b a l w e ig h t e d a v e r a g e t o t a l i n s t a l l e d c os t s , c a p a c i t y f a c t o r s a n d L C O E f o r bioenergy, 2010–2018 30 Figure 1.1 W e ig h t e d a v e r a g e r o t o r d ia m e t e r a n d n a m e p l a t e c a p a c i t y e v o l u t i o n , 2 0 1 0 – 2 0 1 8 31 Figure 1.2 Wind turbine price indices and price trends, 1997–2018 32 Figure 1.3 T o t a l i n s t a l l e d c os t s o f o n s h o r e w i n d p r oj e c t s a n d g l o b a l w e ig h t e d a v e r a g e b y year of commissioning, 1983–2018 33 Figure 1.4 O n s h o r e w i n d w e ig h t e d a v e r a g e i n s t a l l e d c os t s i n 1 2 c o u n t r i e s , 1 9 8 4 – 2 0 1 8 34 Figure 1.5 T o t a l I n s t a l l e d c os t r a n g e s a n d w e ig h t e d a v e r a g e s f o r o n s h o r e w i n d p r oj e c t s b y country/region, 2010–2018 35 Figure 1.6 G l o ba l w e i g h t e d - a v er a ge c apac i t y f ac t o r s f o r n e w o ns ho r e and o f f s ho r e w i nd capacity additions by year of commissioning, 1983–2018 36 Figure 1.7 H i s t o r i c a l o n s h o r e w i n d w e ig h t e d a v e r a g e c a p a c i t y f a c t o r s i n a s a m p l e o f 12 countries by year of commissioning, 1984–2018 37 Figure 1.8 C o u n t r y - s p e c i f i c a v e r a g e c a p a c i t y f a c t o r s f o r n e w o n s h o r e w i n d p r oj e c t s , 2 0 1 0 a n d 2 0 1 8 38 Figure 1.9 LCOE of onshore wind projects and global weighted average by year of commissioning, 1983–2018 39 Figure 1.10 T h e w e ig h t e d a v e r a g e L C O E o f c o m m i s s i o n e d o n s h o r e w i n d p r oj e c t s i n 1 2 c o u n t r i e s , 1 9 8 4 – 2 0 1 8 40 Figure 1.11 R e g i o n a l w e ig h t e d a v e r a g e L C O E a n d r a n g e s f o r o n s h o r e w i n d i n 2 0 1 0 a n d 2 0 1 8 41 Figure 1.12 F u l l - s e r v i c e i n i t ia l a n d r e n e w a l O M p r i c i n g i n d e x e s , w e ig h t e d a v e r a g e O M r e v e n u e s o f t w o manufacturers, and OM costs in Denmark, Ireland and Sweden, 2008–2017 42 Figure 2.1 A v er a ge mo n t h l y E u r o p ean s o l ar P V mod u l e pr i c e s b y mod u l e t e c h no l og y and m an u f ac t u r er , Jan 2010–Jul 2018 top and average yearly module prices by market in 2013 and 2018 bottom 43 Figure 2.2 Total installed cost for utility-scale solar PV projects and the global weighted average, 2010–2018 44 Figure 2.3 U t i l i t y - s c a l e s o l a r P V t o t a l i n s t a l l e d c os t t r e n d s i n s e l e c t e d c o u n t r i e s , 2 0 1 0 – 2 0 1 8 45 Figure 2.4 D e t a i l e d b r e a k d o wn o f u t i l i t y - s c a l e s o l a r P V t o t a l i n s t a l l e d c os t s i n G 2 0 c o u n t r i e s , 2 0 1 8 46 Figure 2.5 G l o b a l w e ig h t e d a v e r a g e c a p a c i t y f a c t o r s f o r u t i l i t y - s c a l e P V s y s t e m s b y y e a r o f c o m m i s s i o n i n g , 2010–2018 47 Figure 2.6 L C O E f r o m u t i l i t y - s c a l e s o l a r P V p r oj e c t s , g l o b a l w e ig h t e d a v e r a g e a n d r a n g e, 2 0 1 0 – 2 0 1 8 47 Figure 2.7 U t i l i t y - s c a l e s o l a r P V w e ig h t e d - a v e r a g e L C O E t r e n d s i n s e l e c t e d c o u n t r i e s , 2 0 1 0 – 2 0 1 8 48IRENA | 7 Figure 3.1 Average distance from port and water depth for commissioned offshore wind projects, 2001–2018 49 Figure 3.2 T u r b i n e s i z e s f o r c o m m i s s i o n e d o f f s h o r e w i n d p r oj e c t s a n d g l o b a l w e ig h t e d a v e r a g e, 2 0 0 0 – 2 0 1 8 50 Figure 3.3 T o t a l i n s t a l l e d c os t s f o r c o m m i s s i o n e d o f f s h o r e w i n d p r oj e c t s a n d g l o b a l w e ig h t e d a v e r a g e, 2000–2018 51 Figure 3.4 Capacity factors for commissioned offshore wind projects and global weighted average, 2000–2018 52 Figure 3.5 LCOE for commissioned offshore wind projects and global weighted average, 2000–2018 53 Figure 4.1 T o t a l i n s t a l l e d c os t s o f C S P p l a n t s b y t e c h n o l o g y a n d s t o r a g e d u r a t i o n , 2 0 1 0 – 2 0 1 8 54 Figure 4.2 C a p a c i t y f a c t o r t r e n d s f o r C S P p l a n t s b y t e c h n o l o g y a n d s t o r a g e d u r a t i o n , 2 0 1 0 – 2 0 1 8 55 Figure 4.3 D i r e c t n o r m a l i r r a d ia t i o n l e v e l s f o r C S P p r oj e c t s b y y e a r o f c o m m i s s i o n i n g a n d t e c h n o l o g y , 2010–2018 56 Figure 4.4 L C O E f o r C S P p r oj e c t s b y y e a r o f c o m m i s s i o n i n g , 2 0 1 0 – 2 0 1 8 57 Figure 5.1 Total installed costs by hydropower project and global weighted average, 2010–2018 58 Figure 5.2 T o t a l i n s t a l l e d c os t s f o r h y d r o p o w e r b y p r oj e c t a n d w e ig h t e d a v e r a g e b y c a p a c i t y r a n g e, 2000–2018 59 Figure 5.3 T o ta l i ns ta l l e d c o s t r an ge s and c apac i t y w e i g h t e d a v er a ge s f o r l ar ge h y d r o p o w er projects by country/region, 2010–2018 60 Figure 5.4 T o ta l i ns ta l l e d c o s t r an ge s and c apac i t y w e i g h t e d a v er a ge s f o r s m a l l h y d r o p o w er projects by country/region, 2010–2018 61 Figure 5.5 H y d r o p o w er pr o j e c t c apac i t y f ac t o r s and c apac i t y w e i g h t e d a v er a ge s f o r l ar ge hydropower projects by country/region, 2010–2018 62 Figure 5.6 H y d r o p o w er pr o j e c t c apac i t y f ac t o r s and c apac i t y w e i g h t e d a v er a ge s f o r small hydropower projects by country/region, 2010–2018 63 Figure 5.7 L a r g e h y d r o p o w e r p r oj e c t L C O E a n d c a p a c i t y w e ig h t e d a v e r a g e s b y c o u n t r y / r e g i o n , 2 0 1 0 – 2 0 1 8 64 Figure 5.8 S m a l l h y d r o p o w e r p r oj e c t L C O E a n d c a p a c i t y w e ig h t e d a v e r a g e s b y c o u n t r y / r e g i o n , 2 0 1 0 – 2 0 1 8 65 Figure 6.1 G e o t h e r m a l p o w e r t o t a l i n s t a l l e d c os t s b y p r oj e c t , t e c h n o l o g y a n d c a p a c i t y , 2 0 0 7 – 2 021 66 Figure 6.2 C a p a c i t y f a c t o r s o f g e o t h e r m a l p o w e r p l a n t s b y t e c h n o l o g y a n d p r oj e c t s i z e, 2 0 0 7 – 2 021 67 Figure 6.3 L C O E o f g e o t h e r m a l p o w e r p r oj e c t s b y t e c h n o l o g y a n d s i z e, 2 0 0 7 – 2 021 68 Figure 7.1 T o ta l i n s ta l l e d c o s t o f b i o en er g y - f i r e d p o w er gen er a t i o n pr o j e c t s b y selected feedstocks and country/region, 2000–2018 69 Figure 7.2 T o ta l i n s ta l l e d c o s t o f b i o en er g y - f i r e d p o w er g en er a t i o n pr o j e c t s f o r d i f f er en t capacity ranges by country/region, 2000–2018 70 Figure 7.3 T o ta l i ns ta l l e d c o s t o f b i o en er g y - f i r e d p o w er g en er a t i o n pr o j e c t s f o r d i f f er en t capacity ranges by selected feedstock and country/region, 2000–2018 71 Figure 7.4 P r oj e c t c a p a c i t y f a c t o r s a n d w e ig h t e d a v e r a g e s o f b i o e n e r g y - f i r e d p o w e r generation projects by feedstock and country/region, 2000–2018 72 Figure 7.5 P r oj e c t c a p a c i t y f a c t o r s a n d w e ig h t e d a v e r a g e s o f s e l e c t e d f e e d s t o c k s f o r bioenergy-fired power generation projects by country and region, 2000–2018 73 Figure 7.6 L C O E b y p r oj e c t a n d w e ig h t e d a v e r a g e s o f b i o e n e r g y - f i r e d p o w e r g e n e r a t i o n p r oj e c t s by feedstock and country/region, 2000–2018 74 Figure 7.7 L C O E a n d c a p a c i t y f a c t o r b y p r oj e c t a n d w e ig h t e d a v e r a g e s o f s e l e c t e d f e e d s t o c k for bioenergy-fired power generation projects by country/region, 2000–2018 75 Figure A.1 D i s t r i b u t i o n o f p r oj e c t s b y t e c h n o l o g y a n d c o u n t r y i n t h e I R E N A R e n e w a
展开阅读全文

最新标签

网站客服QQ:123120571
环境100文库手机站版权所有
经营许可证编号:京ICP备16041442号-6